Search results for "Fat points"

showing 6 items of 6 documents

On the Betti numbers of three fat points in P1 × P1

2019

In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in P1 × P1 . A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in P2 and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.

13F20Fat points Hilbert functions Multiprojective spaces13A15Fat pointsMathematics - Commutative Algebra13D40Mathematics - Algebraic GeometrySettore MAT/02 - AlgebraFat points; Hilbert functions; Multiprojective spacesMultiprojective spacesSettore MAT/03 - GeometriaMathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; Mathematics - Commutative Algebra; 13F20 13A15 13D40 14M0514M05Hilbert functions
researchProduct

Elementary (-1)-curves of P-3

2006

In this note we deal with rational curves in P^3 which are images of a line by means of a finite sequence of cubo-cubic Cremona transformations. We prove that these curves can always be obtained applying to the line a sequence of such transformations increasing at each step the degree of the curve. As a corollary we get a result about curves that can give speciality for linear systems of P^3.

Discrete mathematicsSequenceAlgebra and Number TheoryDegree (graph theory)Linear system14C20Finite sequenceMathematics - Algebraic GeometryCorollaryLinear systems fat pointsFamily of curvesLine (geometry)FOS: MathematicsSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Computer Science::DatabasesMathematics
researchProduct

On multiples of divisors associated to Veronese embeddings with defective secant variety

2009

In this note we consider multiples aD, where D is a divisor of the blow-up of P^n along points in general position which appears in the Alexander and Hirschowitz list of Veronese embeddings having defective secant varieties. In particular we show that there is such a D with h^1(X,D) > 0 and h^1(X,2D) = 0.

DivisorGeneral MathematicsLinear systemLinear systems14C20CombinatoricsMathematics - Algebraic GeometrySecant varietyLinear systems fat pointsFOS: MathematicsSettore MAT/03 - Geometriafat pointsAlgebraic Geometry (math.AG)General positionMultipleMathematics
researchProduct

Standard classes on the blow-up of $\mathbb{P}^n$ at points in very general position

2012

Linear systems fat points birational transformationsSettore MAT/03 - Geometria
researchProduct

A conjecture on special linear systems of $mathbb{P}^3$

2005

Linear systems fat pointsSettore MAT/03 - Geometria
researchProduct

On a class of special linear systems of P^3

2003

In this paper we deal with linear systems of P^3 through fat points. We consider the behavior of these systems under a cubo-cubic Cremona transformation that allows us to produce a class of special systems which we conjecture to be the only ones.

Mathematics - Algebraic GeometryFOS: MathematicsLinear systemsSettore MAT/03 - Geometriafat points14C20Algebraic Geometry (math.AG)
researchProduct